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I. INTRODUCTION 

This progress report summarizes our continuing research into the quantitative non- 
destructive evaluation of composite materials. In previous reports we have described 
investigations of impact damage in graphite-epoxy composites. In this report we shift 
our emphasis somewhat and describe investigations we have carried out to characterize 
porosity in composite media using ultrasonic waves. These investigations are described 
in Section II. Previous reports have also described our investigations of local approxima- 
tions to the Garners-Kronig relations. In Section I11 of this Progress Report we present a 
derivation of these relations and show that they may also be applicable to systems that 
could conceivably exhibit considerable dispersion such as composite laminates contain- 
ing porosity. 

11 CHARACTERIZATION OF POROSITY IN COMPOSITE LAMINATES 

IIa. INTRODUCTION 
The detrimental effects of porosity on material strength are well known. The work 

of Rose, Hsu, and Adler provides a means of estimating the volume fraction of pores and 
the average pore radius in isotropic elastic media from the value of frequency at which 
the attenuation coefficient becomes frequency independent and the magnitude of the 
attenuation coefficient at that plateau. Quantitative results for the isotropic case depend 
on numerical factors obtained by Gubernatis et al. which are functions of the ratio of the 
transverse to longitudinal sound velocities? Adler, Rose, and, Mobley have tested these 
theories by making measurements of attenuation covering a frequency range that 
extended well into the frequency independent plateau. Recent investigations suggest the 
feasibility of applying these methods to estimate the volume fraction of porosity in com- 
posite la rn ina te~ .~- l~  The experimental results of these investigators suggest that the 
theoretical results obtained by Rose et al. are qualitatively correct even though some of 
the features of wave propagation in layered, anisotropic media are not explicitly incor- 
porated into the scattering model. 

In this report, we consider an approach to deal with the case of anisotropic media, in 
which the magnitude of the attenuation may preclude making measurements at 
sufficiently high frequencies to reach the plateau region. Approaches to materials char- 
acterization based on the frequency dependence (slope) of attenuation are widely 



- 3 -  

employed in medical ultrasonics. A well-known experimental result for frequencies 
lower than that corresponding to the plateau (Le., f < f h i g h )  but above the Rayleigh 
region (f > f law ) is that the attenuation coefficient exhibits an approximately linear 
increase with frequency over a range from f l ow  to fh igh .  Typically the useful bandwidth 
of the measurement is substantially smaller than this range and falls at an unknown loca- 
tion between these limits. Fortunately, the expression for the attenuation coefficient con- 
tains numerical factors which depend only weakly on the ratio of fhigh to f l a w ,  varying 
only by a factor of 3 for the ratio of t h i g h  to f low ranging from 10 to 1 to 10,OOO to 1. In 
the case of composites with complex lay-ups for which a detailed theory that describes 
the effects of porosity on attenuation may not be available, empirical knowledge of these 
numerical factors obtained from laminates of known porosity might provide an approach 
for estimating the porosity from ultrasonic measurements of similar composites. 

To evaluate this approach we measured the slope of attenuation as a function of fre- 
quency in a set of 5 glass-fiber/epoxy-matrix test specimens with simulated porosity 
(glass spheres) ranging from 0% to 12% (volume fraction) and a set of 5 uniaxial 
graphite-fiber/epoxy-matrix specimens with simulated porosity (glass spheres) ranging 
from 1% to 8%. Good correlation was obtained between the measured slopes and poros- 
ity in each case, suggesting that semi-quantitative estimates of porosity can be achieved 
without measurements in the plateau region and without a quantitative theory. 

IIb. EXPERIMENTAL METHODS 

1) SAMPLE PREPARATION 
The effects of porosity were simulated using solid glass beads, 75 to 150 microns in 

diameter, in 16 ply uniaxial graphite-fiber/epoxy-matrix composites. These composites 
were fabricated using 5208-T300 prepreg tape. Measured amounts of glass beads were 
introduced between the 12th and 13th layers during the lay-up of a 12 by 16 inch compo- 
site. The beads were dusted onto circular regions 2 inches in diameter at sites on a 
square grid with centers 4 inches apart. The sample was autoclaved and cured in an oven 
using a standard cure protocol. The 12 by 16 inch sample was cut into smaller samples 
(approximately 3.75" by 3.75") so that each contained a single zone of "porosity" with a 
volume fraction of 1%, 2%, 4%, 6%, or 8%. 

2) MEASUREMENT METHODS 
The signal loss was measured in transmission mode with a specimen placed in the 

overlapping focal zones of a matched pair of 25 MHz center frequency, 0.25 inch 
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Figure 1. Block diagram of the transmission mode acquisition system used for measurements 
of attenuation in porous graphite/epoxy composites. 
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diameter, 1 inch focal length transducers. Each sample was scanned on a 21 by 21 grid 
in 1 mm steps and the acquired frequency spectra averaged to reduce the effects of spa- 
tial variations of "porosity" within the samples. 

The measurement system used for data acquisition is illustrated schematically in 
Fig. (1). The transmitting and receiving transducers were oriented so that the insonifying 
beam was perpendicular to the surfaces of the sample and were aligned by viewing the 
received signal on a spectrum analyzer. A Metrotek MP215 wideband pulser was used to 
drive the transmitting transducer. The output of a MR106 wideband receiver was routed 
to a stepless gate and the 1.5 p e c  gated signal was subsequently used as the input to the 
spectrum analyzer. A DEC PDP 11/73 running the UNIX operating system was used to 
control the motor driven apparatus on a C-scan tank (in which the samples were placed 
for data acquisition) as well as to acquire the data from the spectrum analyzer for storage 
and subsequent analysis. 

IIc. DATA ANALYSIS 
The signal loss through the composite laminate was obtained by normalizing the 

averaged frequency spectrum with a calibration spectrum obtained from a water-only- 
path trace, 

Signal Loss = log [calibration spectrum ] - log [sample spectrum 1 . (1) 

This method of log spectral subtraction is performed to deconvolve effects arising from 
the electromechanical response of the transducers and front-end electronics from the 
sample spectrum. The normalized data were analyzed by performing a Taylor expansion 
around the center frequency 7 of the useful bandwidth, 

Signal loss = K ~ +  K, x ~f -7) (2) 

where KO is an estimate of the average signal loss over the useful bandwidth, and K, is 
the rate of change of the signal loss with respect to frequency. This procedure is illus- 
trated in Fig. (2) where the signal loss of a typical spectrum is plotted as a function of 
frequency along with the appropriate Taylor expansion. The usable bandwidth of this 
system was 3 to 12 MHz, where the upper limit was due to the increasing attenuation 
coefficient as function of frequency exhibited by the composite laminates. 

IIc. METHOD VALIDATION 
In order to validate ow methods, measurements were made on a set of 5 glass- 

fiber/epoxy-matrix composites containing controlled amounts of simulated "porosity" 
(O%, 1%, 3%, 6%, or 12% volume fraction). The glass fibers were approximately 12 pm 
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Figure 2. Plot displaying a typical signal loss and the corresponding Taylor expansion given 

by Eq. (2). 
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Figure 3. Validation of the proposed method. Preliminary experiments were performed on 
glass-fibedepoxy-matrix composites with controlled amounts of "porosity" (simulated by solid 
glass inclusions). 
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in diameter and four to five centimeters in length. The fibers (p = 2.43 k 0.09 gm/cm3) 
were layed-up by hand in an epoxy resin matrix (p = 1.10 k 0.01 gm/cm3). Porosity was 
simulated by the random inclusion of solid lead-glass spheres (p = 2.47 If: 0.04 gm /cm3) 
drawn from a distribution with radii ranging between 37 pm and 75 pm. These test sam- 
ples were fabricated with a fiber volume fraction of approximately 8%. One sample was 
fabricated without glass beads in order to serve as a control. 

The results of this control study are presented in Fig. (3) in which the slope of the 
attenuation is plotted versus volume fraction of "porosity". The correlation coefficient 
obtained by performing a linear regression between slope of attenuation and the volume 
fraction of "porosity" is 0.9, suggesting the potential of the method. 

IId. THEORY 
Rose has derived an expression for the concentration of hollow spheres embedded 

in an elastic medium, 
m 

where a ( k )  is the excess attenuation due to the scattering of sound waves by the pores.12 
That is, a ( k )  represents the increase in the attenuation produced by the addition of hol- 
low spherical pores to the material above that due to the attenuation from the elastic 
background medium. We consider the case in which the excess attenuation due to the 
presence of porosity can be approximated by 

I -  

a(f ) = (excess attenuation ) = (excess K f low < f  < f h i g h  (4) 
f high i f > f high 

as illustrated in Fig. (4). 
This model implies an f dependent Rayleigh scattering in the low frequency 

region, and a frequency independent geometrical scattering in the high frequency region. 
The approximately linear dependence on frequency in the intermediate region is well 
supported from experimental measurements performed on composite laminates. Because 
of the finite usable bandwidth of the experimental apparatus, both f high and f low are usu- 
ally unknown. Nevertheless, the relationship between the volume concentration of poros- 
ity and excess K is only weakly dependent upon the ratio off high to fh . 



- 9 -  

Model Attenuation Coefficient 

a OC constan\ 

Frequency 
Independent 

Region . 

Rayleigh Region 
I I I I I I I I I I I I I I I I I 

Figure 4. Illustration of the phenomenological model. 
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Figure 5. Plot illustrating the slow variation of the Numerical Factor as a function of the 
ratio of fiighto four 
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Inserting Eq.(4) into Eq.(3) leads to 

m 

1 flov fhigh d f  f hig df 

f l o w 3  0 flow f h g h  

Conc. = - 4 x - x ( e x c e s s K l ) x  V - I f 2 &  + I -+ I --#+ 3 A 2 ~  2~ 

or 

4 Conc. = (excess Kl) x - 
3 A 2 ~  2~ 

It is convenient to express this result as 

Conc. = (excess K l )  x Velocity x [Numerical Factor] , 

where 

4 1 
3Azn 2~ 

Numerical Factor = - x - x 

The Numerical Factor is a slowly varying function of the ratio f high lf lav over several 
decades, as illustrated in Fig. (5). Because f high and f l o w  are rarely known, this slow 
variation is the basis for the predictive usefulness of the model. 

IIe. RESULTS and CONCLUSIONS 
The results obtained for the graphite-fiber/epoxy-matrix specimens are displayed in 

Fig. (6). The scatter plot displays the resultant slope of attenuation (from the spatially- 
averaged normalized spectrum) for each of the five samples versus the volume fraction of 
"porosity" for that sample. The slope of attenuation correlates well (r = 0.9) with concen- 
tration of "porosity". An examination of Equation(7) indicates that the value of the 
Numerical Factor for the composite laminates under investigation can be determined 
from the slope of the "Slope of Attenuation'' versus the "Volume Fraction of Porosity" 
correlation plot, 

-1 
Slope of Attenuation 

Numerical Factor = (9) 

For the glass-fiber/epoxy-mamx composites used to validate our procedure the value of 
the Numerical Factor was found to be = 0.5 (using a velocity of 0.25 cm/psec) and for 
the graphite-fiber/epoxy-matrix composites studied the value for the Numerical Factor 
was found to be = 2 (using a velocity of 0.30 crn/psec). The good agreement between the 
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Figure 6. Correlation plot for measurements on graphite-fiber/epoxy-matrix composites. 
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experimental data and the phenomenological model suggests that this approach may be 
useful in estimating concentrations of porosity in composite laminates. 

I11 KRAMERS-KRONIG RELATIONSHIPS 

IIIa. INTRODUCTION 
Previous reports from this Laboratory have focused on local approximations to the 

following Kramers-Kronig relationships 

where Kl(61) and K 2 ( 0 )  are the real and imaginary parts, respectively, of the dynamic 
compressibility K (61) . Tests of several approximations to these exact relations have been 
reported on previously (every progress report from the 9/15/85 to 3/14/86 report to this 
one). In the last proposal we indicated our intention to provide a derivation of the local 
approximation to Eq. (10) on which our previous investigations were based. The next 
two portions of this report, Sections IIIb and IIIc, present such a derivation. They also 
demonstrate that the local approximation we have tested may be applicable in systems 
exhibiting considerable dispersion such as carbon-carbon composites. 

IIIb. DERIVATION OF TWO LOCAL APPROXIMATIONS 
The nonlocal character of Equations (10) and (11) limits their usefulness. Fre- 

quency domain data extending over the range from 0 to is never available experimen- 
tally due to the limited bandwidth of any measurement system. Computable approxima- 
tions to Eqs. (10) and (11) are needed. The purpose of this Section is to derive a local 
approximation to the Kramers-Kronig relations. The approximation derived here is not 
the only local approximation to these equations which is possible. In fact, most of the 
common Hilbert transform pairs do not satisfy the approximation that will be derived 
here.13 

We will present a derivation of a local approximation in a very general setting. In 
order to do this we will first rewrite the Kramers-Kronig relations in a more general nota- 
tion 

20 - A  @)-A (a) du 
X o  u - 0  

B ( ~ ) = - J  
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where A (a) and B (a) are the real and imaginary parts respectively of a general fre- 
quency response function e ( ~ ) .  The dynamic compressibility given above K (a) is just 
one of many choices we could have made for the frequency response function. In fact, 
many researchers have taken as their starting point the acoustic index of refraction and 
then proceeded from the Kramers-Kronig relations relation between the real and ima- 
ginary parts of this quantity. This result is essentially equivalent to the approach we have 
taken as long as we assume that the attenuation coefficient is greater than zero for all fre- 
quencies but zero and - which seems reasonable. (This claim will be substantiated 
below, in Section IIIc.2.) The first step in the approximation scheme is make the change 
of variables 

With this change of variables the integral becomes 

B(a) = -1 2mA(wx)-A(a)dx 
K O  x2-1 

? 

where the integration variable is now dimensionless. Now the first in a series of approxi- 
mations is made by writing 

2 ' y 'mA (ax) -A (a) dx B(o) =1 - 
Xl-p/o x 2 - 1  

where p is the distance between o and the nearest singularity of A (u) in the complex u 
plane. If it happens that p > a then the appropriate approximation is 

2 l+p/wA (m)-A (a) dx 
n o  x -1 2 B ( O )  = - 1 

Before proceeding it is worth noting that Eq. (15) constitutes an example of the 
finite Hilbert transform. As such the exact of the approximate equation is available.14 
However, this approach is not pursued here. Making the approximation in Eq. (15) 
involves neglecting the tails of the integral. The first term neglected is 

which has, due to Assumption lb), an absolute value less than 
1 - p/o  

2M 5 -  d x .  
n: 0 x2-1 

Thus the absolute value of the first tail is less than 
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for p 5 o , and is equal to 0 for p 2 o. The other tail is 
m 

which has an absolute value that is less than 

Making the further change of variables z = x - 1 leads to 

dz 2M O0 dx = - j  Z M J -  O 1  
n: 1+p/0x2- 1 n: p/wz2+2z 

Hence, 

A review of the error bounds that have been established so far indicates that in the 
case where o << p these errors will decrease to zero. (Under some circumstances, it is 
also possible that the term that has been retained may be decreasing to zero at the same 
rate, in which case the approximation will fail.) 

The next step in the approximation scheme is to expand A ( u )  in an infinite series, 
using Burmann's series e~pansi0n.l~ The expansion is given in the following theorem: 

Burmann's Theorem: 

Let ~ ( z  ) be a function defined by the equation 

where $(z) is analytic in a circle centered at z =a.  Then any function f (z) analytic 
in the same circle centered at a can be expanded in the form 

where 
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and y is a contour in the t -plane, enclosing the points a and z and such that, if 6 be 
any point inside it, the equation $ ( t )  = $(C) has no roots on or inside the contour 
except a simple root t = c. 

Of course the choice of $ is completely arbitrary up to the conditions imposed by the 
theorem. It is this arbitrariness which makes it possible to derive many different local 
approximations to the Kramers-Kronig relations. $ should be chosen so that the first few 
terms of the series provide a good estimate of A (u) over the frequency range of interest. 
This choice is extremely important to approximations based on experimental data where 
the calculation of even the first derivative is often unreliable due to noise. 

If the function A (0) is a slowly varying function of o then it would seem reason- 
able to expand A (a) in terms of a function + which is also varying. In this case one 
choice for @ is 

$(u) = ln(u/o) (27) 

where the argument of $ has been chosen to be a dimensionless function of a. With this 
choice of $, y~ becomes 

(28) 
U - - 0  1 

I( +a U-JW ln(u/o) - 0 U-+a 1 
y~(o) = limyJ(u) = lim = lim- = o. 

Inserting this into Burmann's expansion leads to the following series representation for 

A (u) 
00 

[A' (o>cl>" 1 { l n ( ~ / o ) ) ~  dm-' A ( u )  = A ( o )  + 
m !  

m = 1  

where a prime denotes differentiation with respect to o, since the expansion of A (u) was 
carried out in the complex u -plane which contains o. Using this sum in Eq. (15) leads to 

Assuming that the series in Eq. (29) is uniformly convergent and recalling that the 
integral appearing in Eq. (30) may be thought of as a principal value integral, we see that 
it is possible to bring the summation outside of the integral to produce 

l+p/O 

It is still, however, appropriate to think of the integral in Eq. (10) and, hence, Eq. (30) as 
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a principal value integral. With this restriction the singularity at x = 1 is excluded from 
the integration range and thus if Burmann’s series, Eq. (29), is uniformly convergent over 
the range of integration then so is the series obtained by dividing Eq. (29) by 1/(x2 - l).) 
The next step is to further approximate each of these integrals by moving the lower 
bound of integration back to 0 and moving the upper bound out to 00. It is an easy matter 
to evaluate the error introduced by taking the upper bound of integration out to -. Error 
estimates are obtained by evaluation of 

which goes to zero as p 4 00 for fixed a. Estimation of the error introduced by taking 
the lower bound of integration back to 0 is harder to obtain. These error estimates would 
involve evaluation of integrals like 

1-p/o 

all of which have a singularity at the lower bound of integration. However, if o << p 
then it will not even be necessary to evaluate these integrals since the integration range 
already extends to 0 in that case. Of course, all integrals must be taken as principal value 
integrals in order to exclude the singularity at x = 0 from the range of integration. Furth- 
ermore, it is apparent that if the frequency response function is getting small around a 
then the errors introduced by moving the bounds of integration as just discussed may 
cause the approximation to fail. 

Having the range of integration as described above, we see that the expression for 
B(o) isnow 

The integrals in Eq. (34) may be found in many tables of integrals, at least for the first 
few values of rn .16 For the sake of completeness, however, it will be shown how to 
evaluate these integrals. The fist  thing to note is that these integrals vanish for even 
values of rn . This may be seen as follows. Letting rn = 2n, 

1 
Y 

In the integral from 1 to 00, making the change of variables x = - gives 



- 18- 

1 0 

1 1 

Now, the minus sign preceding the lny may be dropped since 2n is even. Next writing x 
in place y gives 

1 1 

Thus, the sum in Eq. (34) actually ranges over only the odd values of m . 

used 
In order to evaluate the remaining integrals, the following contour integral will be 

where the contour C is that depicted in Fig. (7) together with the subcontours which will 
be needed below. It must be stressed that the complex plane in which the contour C 
exists is not the same complex plane as was used to derive the Kramers-Kronig equa- 
tions. It might be more accurate to refer to the complex plane used in the latter case as 
the complex angular frequency plane since numbers in that domain have dimensions such 
as rad-Hz or rad-MHz whereas the complex numbers in which the contour C is placed 
are dimensionless. In order to differentiate between these two complex planes the con- 
vention will be adopted in which dimensionless complex numbers will be denoted by y 
and the set of these complex numbers referred to as the complex y plane. As a further 
convention real numbers in the complex y plane will be denoted by the symbol x . Com- 
plex numbers in the complex angular frequency plane will be denoted by u and the set of 
these complex numbers will be referred to as the complex u plane. For example, the 
expansion of A ( o )  carried out using Burmann's theorem was done in the complex u 
plane and the integrals appearing as a result of the substitution of this series into the 
Kramers-Kronig equations have been rescaled, Eq. (27), so that they may be evaluated in 
the complex y plane. Note that the integral over the large semicircle C 6  vanishes as the 
radius of that semicircle goes to infinity. Additionally, the integral over the small 

c 
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Figure 7). Contour used to evaluate the integrals in Eq.(39) shown in the 
dimensionless complex y-plane. 
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semicircle C5 of radius p centered at the origin vanishes as p approaches zero. To see 
this, parameterize the semicircle as follows. Let y = peie where 8 ranges from -n to n. 
Then, 

Using the binomial theorem permits this to be rewritten as 

Furthermore, 

P P2 P 
where L'Hospital's Rule has been used. We find, after application of this rule k times, 
that 

(-l)k-lk ! limplnp = 0 (43) 
P+O 

So in the limit as p +- 0 the integral over C5 vanishes. 
We now turn to the evaluation of the contributions from the remaining contours. 

The integrals over C4 and C3 are evaluated using a generalization of the residue theorem. 
It must be noted, however, that the negative portion of the real axis lies on the second 
branch of the log function. That is, on the negative real axis, 

In@) = hay I) - i n  

Bearing this in mind, we see that the contribution from C4 is 

(In(1) - in)" - (- i n)"+l - 
2 2 

- ni 

(Since d b2-l)/dy evaluated at y =-1 is -2.) and the contribution from C3 is 

(44) 

(45) 

Now the integrals over C and C2 may be evaluated as principal value integrals. Collect- 
ing results from above gives 
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where the convention that real numbers in the complex y plane are to be denoted by x 
has been used. The binomial theorem may be used to rewrite this as 

m - 1  

o =  c 
k=O 

so 

For m = 1 the sum vanishes and 
m 

Form =3 we get 

Thus, from Eq. (34), the local approximation to first order is 

(48) 

(49) 

To find the corresponding approximation for the other Kramers-Kronig equation, 
Eq. (W, 

a du A ( o ) - A ( 0 )  = --I 202 u 
0 u 2 - 0 2  
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proceed by rewriting it in the following form 

--- B ( u )  B(o) 

A ( o ) - A ( O )  = -01 $[ ' u -o 2" du] (54) 

The expression in the parentheses is identical in form to the integral equation whose 
approximation has just been derived so long as B (u)/u takes the same role as A (u ) took 
earlier and the expression A (a) - A  (0) takes the place of B (0). Then the following is 
immediate 

no2 d B ( o )  
2 do a A (a) - A  (0) - --- (55) 

An alternate local approximation may be obtained similarly by starting with 
Eq. (29) but expanding A (u ) in powers of In(- u /a) about the point u =a, where the log- 
arithm is thought of as a complex valued function. In this case the same approximation 
scheme developed above may be used. However, the integrals evaluated in Eq. (34) 
become 

This is equal to 
m 

{ln(x) - in}" dx . I 0 x 2 - 1  

For rn = 1 this becomes 

On the other hand, the analog of Eq. (28) is 

U - - 0  ~(a) = lim = lim l/(-1/24) = -a. 
""In[ -4 - In[ 4 u -+o 

This leads to a local approximation which is 

(57) 

(59) 
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and 

noL d B ( u ,  
2 do o 

A ( a ) - A ( O )  --- 

This local approximation provides an accurate description of many acoustical systems 
where the attenuation coefficient is an increasing function of frequency. 179 l8 

Before going on, it is worth noting that Burmann's expansion applied directly to 
@(a) could also be used to derive a local approximation. This could be achieved by 
expanding @(a) in terms of some function @ chosen to be purely imaginary or real. Tak- 
ing either the real or imaginary parts of the resulting series expansion would lead to a 
purely local relation between the real and imaginary parts of @(a), Le., between A (a) 
and B (a). However, in this case the right-hand-side of the relation would have terms 
containing both A (a) and B (a). The advantage obtained by proceeding as was done in 
this Section is that the relation obtained gives A ( a )  purely in terms of B(a)  and 
vice versa. 

IIIb. DISCUSSION AND PREVIEW 
There is at least one obvious way in which both local approximations may fail. 

Inspection of Burmann's series, Eq. (26), shows that every term except the first contains 
A '(a). If A '(0) happens to be zero then the expansion technique discussed here must fail 
to give any useful information about the behavior of the function B (a). If A '(a) = 0 then 
A (a) must be a constant. If A (a) is constant globally, Le., constant for all o, then B (a) 
must be zero also. This result follows from the global form of the Kramers-Kronig equa- 
tions. However, it is not clear a priori that if A (a) behaves locally like a constant that 
B (a) must be zero. In this sense the global and local Kramers-Kronig equations lead to 
the same predictions. 

It is also necessary to point out that there is considerable freedom in the choice of 
the expansion function @ used in Burmann's theorem Eq. (25). For example, the function 
In(- u) was used instead of ln(u) to obtain an alternate local approximation. This led to 
the local approximation given by Eq. (60). In fact the first local approximation derived, 
Eq. (53), was tested by Booij and Thoone in viscoelastic theory and found to agree well 
with experiment. This approximation, Eq. (53), may also have application in acoustics, 
for instance, in the case where the phase velocity is decreasing with frequency but where 
the corresponding attenuation must be positive. 

It may seem surprising to approximate an integral by a derivative, especially in light 
of the fact that derivatives usually make functions rougher and integrals usually are con- 
sidered to be smoothing operators. However, the integrals analyzed in this Section were 
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singular integrals, so intuition may be misleading in this case. Indeed, the main results of 
this Section indicates that this is so. In fact, it has been shown in this Section that the 
Kramers-Kronig integrals behave more like derivatives than regular (i.e., nonsingular) 
integrals. This result has a precedent in the theory of complex variables in the form of 
Cauchy’s formula for the derivative of an analytic function expressed as a complex con- 
tour integral. Beyond that, the local character of these relations should not be surprising 
when it is recalled that the analysis began with analytic functions. The Cauchy-Riemann 
equations provide an example of a local relationship between the real and imaginary 
parts of any function at any point where that function is analytic. Results of a similar 
nature have been obtained by Widder19 as well as Paley and Wiener20 for the case of the 
Stieltjes transform. Examination of these results should give credibility to the idea that it 
is possible to obtain local estimates of the behavior of functions related by nonlocal 
integral equations. 

Specifically, the Stieltjes transform of @(t) is 

Widder has shown that this nonlocal relation has the purely local inversion given by 

Paley and Wiener derive an alternate local expression which is 

A common feature to both of these expressions is that they call for the evaluation of 
derivatives up to infinite order. This seems to be a common feature of many local inver- 
sion formulae of nonlocal operators. 
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IIIc. THE LOCAL APPROXIMATION IN ACOUSTICS 
In this Section the local approximations derived in Section IIIa. will be applied to 

acoustical systems. In Section IIIb.1 we will derive a local approximation relating 
dispersion to attenuation in systems exhibiting small dispersion. In Section IIIc.2 we will 
generalize this relation to systems in which the dispersion is not necessarily small. Thus, 
we will fulfill one of the objectives of our previous proposal which was to generalize 
these relations to systems which exhibit considerable dispersion. In this Section we shall 
also see that the acoustic index of refraction could have been chosen as our frequency 
response function without changing any of our results. Thus our approach and that taken 
other researchers, who used the acoustic index of refraction for their frequency response 
function, are essentially equivalent. A preview of the results that we will obtain in this 
Section is presented in Table 1. 

1) The Case of Small Dispersion 
Up to now everything that has been done is perfectly general. At this point a 

specific frequency response function @(a) will be chosen, namely, the dynamic compres- 
sibility K (a) of the medium in which a traveling sound wave will be propagated. (In this 
Section of the report we will apply the local approximation, Eq. (60) to weakly dispersive 
materials. This is essentially a review of previously reported results and is included to 
provide a contrast with the material to be presented in Section IIIc.2 of the present 
report.) At this point the attenuation coefficient and phase velocity fiially enter. This is 
because the frequency dependent compressibility must also satisfy the dispersion relation 
for acoustic wave propagation, 

k 2  = o ~ ~ & ( o ) ,  (61) 

where k is the wave number of the acoustic wave, and po is the density of the material. 
Making the usual identification that 

where C(o) is the phase velocity of the acoustic wave and a(o) is the attenuation 
coefficient, and substituting this relation into Eq. (61) gives 

r 1 2  

Writing K ( o )  as the sum of its real and imaginary parts, 

K ( o )  = K, (o )  + i K 2 ( o ) ,  
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Beginwith K(a) 

Small Dispersion 

Use the local I 
approximation 

Begin withK(o3) 

c 
AsSlmethatc(o3)>0 

and C(o)>O 
for all0 > 0 

Iusethelocall 
approximation 

WO I 
Table 1. A flow chart showing the different developments given in Section 1IIc.l 
(shown in the left column) and IIIc.2 (shown in the right column). Both 
developments lead to the same conclusion but the path on the right is more general. 
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inserting this into Eq. (63), and equating real and imaginary parts gives 
r 1 2  

Shortly, Kl(a) will be identified with A (a) and K2(a) will be identified with B (a). 
However, before this can be done, Eqs. (65) and (66) must be decoupled in order to sim- 
plify the derivation below. This may be accomplished via the following approximation 

(67) a(W(a> << 1 
a 

which is true in many experimental situations. Eq. (67) states that the magnitude of the 
imaginary part of the wave vector is much less than the magnitude of the real part. 
Table 2 contains a compilation of typical values for the left-hand side of Eq. (67). The 
Table is organized in terms of increasing values of a parameter p, the so-called slope of 
attenuation which is defined in Eq. (82). We note that Eq. (67) is very well satisfied for 
all entries in Table 2. With this assumption Eqs. (65) and (66) become 

Dropping the small term gives 

These equations may now be solved for Kl(a) and K2(a), yielding 

1 
K,(N = 

POC 

Now Eq. (60) may be applied to obtain 



r4 
I 
53 

(‘1 
X 

m 
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Substituting the expression for K,(o)  in terms of C(o) gives the following expression 
for dK (o)ld o 

Now substituting Eq. (74) into Eq. (72) gives 

The expression for K 2 ( 0 )  in terms of a(o) may be used to obtain 

d C ( o )  - 2 C ( ~ ) ~ a ( o )  - 
d o  no2 

9 (76) 

from Eq. (75). This equation, Eq. (76), may be rewritten as a separable differential equa- 
tion, 

zo2 d C ( o )  a(o) = 
2c(o)2 d o  

which may be solved by integration. This leads to 

(77) 

It is worth noting that the approximation in Eq. (67) was essential to the derivation of this 
equation. It will be seen later that there is another way to derive Eq. (78) which rests 
solely on the local approximation and which is not limited by the assumption of small 
dispersion. However, at this point it is again necessary to use the fact that the material 
has small dispersion, that is, 

C(o0) = C(0). (79) 

Then it is found that 

This leads finally, with CO = C (COO), to 
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As we have reported in previous progress reports this equation agrees well with experi- 
mental data, obtained from both homogeneous and inhomogeneous materials, for fre- 
quencies from 2 MHz to 20 MHz. However, it may hold over a much wider frequency 
range. Table 3 presents the predictions of Eq. (81) for a variety of different dependences 
of the attenuation coefficient on frequency. In certain cases further conclusions may be 
drawn from Eq. (81). For instance, experimental evidence indicates that the attenuation 
is an approximately linear function of frequency for a wide range of frequencies, i.e., 

a(o> = J-, 
2n 

for a wide range of materials. With this assumption, Eq. (81) predicts 

ln(o/oo) . CO'P C ( o ) - C o  =: - 
-2 
JL 

III2) Acoustical Systems where the Dispersion Is Not Necessarily Small 
As mentioned above, it is not really necessary to make the assumption that the 

dispersive effects are small. This may be accomplished by, first, showing that K ( o )  z 0 
in the lower half plane, which permits the square root of Eq. (63) to be taken without 
introducing any singularities in the lower half plane. This procedure produces a new sys- 
tem response function, also analytic in the lower half plane, which has real and imaginary 
parts that are functions of a(o) and C(o). The resulting Kramers-Kronig relations, 
obtained for this new system response function, are the same as those obtained by 
researchers who use the acoustic index of refraction for their frequency response func- 
tion. Before this can be demonstrated, however, a small detour into the theory of com- 
plex variables must be made. The development given here follows closely that given by 
Landau and Lifshitz2' It rests on two theorems from complex variables which for com- 
pleteness will be stated here. For convenience they will be called Theorem 2 and 
Theorem 3. They are: 

Theorem 2: 

Let a function f be analytic inside and on a simple closed contour C ,  except for at 
most a finite number of poles interior to C . Additionally, let f have no zeros on C 
and at most a finite number of zeros interior to C . Then if C is described in the 
positive sense, 
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f 

Description Observed Frequency Dependence Predicted Frequency Dependence 
of Attenuation Coefficient of Phase Velocity 

Rayleigh Scattering o4 o3 

I I Classical viscous o2 o 1  

Plastics, Composites I Soft Tissue o1 

0 
0 o- Geometric Scattering 

(Hollow Pores) I 

Table 3. A compilation of the observed behavior of the frequency dependence of 
the attenuation ceofficient for several physical phenomena and the corresponding 
frequency dependence of the phase velocity as predicted by Eq.(81). 



- 32 - 

where N is total number of zeros off inside C and P is the total number of poles 
there. A zero of order mo is to be counted mo times, and a pole of order mp is to be 
counted mp times. 

The next theorem is known as the Argument Principle. 

Theorem 3: 

Let C be a simple closed contour described in the positive sense and let f be a 
function which is analytic inside and on C , except possibly for poles interior to C . 
Additionally, let f have no zeros on C . Then 

1 

‘ & X g f ( z )  2.n = N -P 

where N and P are the number of zeros and the number of poles o f f  , counting 
multiplicities, interior to C and A c m g f ( z )  is the change in the argument o f f  as 
we traverse the contour C once. 
If we now return to the very general setting in which the Kramers-Kronig integral 

equations were established, and, furthermore, if we suppose that @(a) is such that its 
imaginary part B (a) is never zero on the real o axis except at zero and infinity, we will 
be able show that @(a) has no zeros in the lower half of the complex o plane. 

Our first step is to consider the integral 

1 d@(o) d o  %l d o  @ ( a ) - a  

where C is the contour shown in Fig. (8). According to Theorem 2 this is equal to the 
difference between the number of zeros and the number of poles of the function 
@(a) - a in the region interior to the contour C. Let a be a real number and C be the 
contour consisting of the real axis and an infinite semicircle in the lower half plane. Sup- 
pose that O(0) = eo is finite. Since @(a) is analytic in the lower half plane, so is 
@(o) - a .  Therefore the integral in E q .  (86) is simply the number of zeros of the func- 
tion @(o) - a ,  that is, the number of points at which @(a) takes on the real value a .  Our 
next step is to perform the conformal mapping from the o plane to the 0 plane via the 
transformation 

Under this transformation Eq. (86) becomes 

1 d @  
G 1 , o - a  
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* 
Complex @-Plane 

Figure 8). Drawing of the contour used in Eq.(86) and its image under the conformal 
transformation defined in Eq.(87). 
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The contour C’ is the image of the contour C under the conformal transformation 
defined in Eq. (87). C’ is depicted schematically in Fig. (8). Now, the function @(a) 
goes to zero as o goes to 00 by the Riemann-Lesbegue Lemma. For this reason the entire 
infinite semicircle in the contour C is mapped onto the single point 0 = 0 on C’. The 
point o=O is mapped onto the point O=Oo. Furthermore, Oo is real since 
0 0  E O(0) = A  (0) (since B (0) = 0 when o = 0). The right and left halves of the real o 
axis are mapped onto some very complicated (and generally self-intersecting) curves 
whose shape is not significant. The important thing about these curves is that they lie 
entirely in the upper and lower halves of the 0 plane respectively. This observation 
about the image of the positive o axis follows from the assumption that the imaginary 
part B (0) of @(a) is strictly greater than zero, except at w=O or 00. The corresponding 
result for the image of the negative o axis follows immediately then from the odd panty 
of the function B(o). Since B(o) is strictly greater than zero, the two images in the 
complex 0 plane nowhere intersect the real axis of the complex 0 plane. Because of this 
property of the curve C’, it can be seen that the total change in the argument of the com- 
plex number 0 - a ,  as we pass once around the contour C’ , is 2.n if a lies between 0 and 
Oo or zero if a lies outside that range. Hence it follows from Theorem 3 that the expres- 
sion in Eq. (88) is unity for 0 < a < Oo, and zero otherwise. 

Thus we conclude that, if a is in this range, then @(a)-a takes the value zero once 
and only once for o in the lower half plane, but if not, then @-a is never zero in the 
lower half plane. Hence, we deduce that on the negative imaginary o axis, where the 
function O(o) is real, it cannot have either a maximum or a minimum since otherwise it 
would take on some values at least twice. As a result @(a) varies monotonically on the 
negative imaginary o axis. Because 0 is analytic in the lower half plane, it can be seen 
that on the negative imaginary axis, and nowhere else, 0 takes on all real values between 
0 and Oo once and only once. 

Let’s now return to our previous setting, and replace @(a) by K ( o ) .  We observe 
that the imaginary part of K (a) is 

Physically, it is clear that C(o) and a(o) are never less than or equal to zero for any 
positive value of o. Thus we see that K * ( a )  > 0 for all positive o. This means that 
K ( o )  is never zero in the lower half o plane and, as has already been shown, that it is 
analytic there. Thus the square root of K(u) must be analytic in the lower half of the o 

1 1 

is the real part of plane. Hence, by Eqs. (63) and (64) the physical quantity -- 1 1 

4% C(o> 
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a Kramers-Kronig pair and that -- a(o) is its corresponding imaginary part. Inserting 

these quantities into the local approximation, Eq. (60), and canceling the factor of - 

that appears on both sides of the resulting equation yields 

4Po 0 
1 

4% 

which leads to 

This is precisely the same result that was obtained earlier in Eq. (78) by assuming that 
dispersive effects were small. However, this restriction appears nowhere in the deriva- 
tion of Eq. (91). Thus, the local approximation, Eq. (91), may hold in systems which 
exhibit considerable dispersion such as carbon-carbon composites. Table 1 reviews the 
developments given in Sections 1II.c. 1 and III.c.2. 
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